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Abstract: The interdependence of electron hopping between redox centers and the physical motion of redox centers is investigated 
systematically. When physical motion is either nonexistent or much slower than electron hopping, charge propagation is 
fundamentally a percolation process. In the opposite extreme, rapid molecular motion thoroughly rearranges the molecular 
distribution between successive electron hops, thereby leading to mean-field behavior. Monte-Carlo simulations are employed 
to study the transition between static percolation and mean-field behaviors as a function of the relative rates of electron hopping 
and physical motion. Previously derived mean-field equations for free physical diffusion (Dahms-Ruff) are shown to be inapplicable 
to systems in which the contribution of physical diffusion to charge transport is small compared to that of electron hopping. 
The concept of bounded diffusion, based upon a simple and approximate harmonic model, is developed and employed in the 
description of charge propagation in systems where the redox centers are irreversibly attached to a surrounding supramolecular 
structure. The mean-field limit for bounded diffusion (Laviron-Andrieux-Saveant behavior) is reached when the rate of physical 
motion exceeds that of electron hopping and the range of physical motion is sufficiently great to permit interactions between 
neighboring redox molecules. An important consequence of this analysis is that the rate constant involved in the proportionality 
between the apparent diffusion coefficient and the concentration of redox sites is the activation-controlled rate constant and 
not a combination of the diffusion- and activation-controlled rate constants. Physical motion, however, manifests itself in the 
mean-squared displacement of an electron between successive electron hops, which, in addition to the electron hopping distance, 
includes a term characterizing the distance a molecule is permitted to move by the surrounding supramolecular structure to 
which it is attached. 

Supramolecular systems1 containing redox moieties constitute 
an important field of research with applications to sensors,2 

electrocatalysis3 and electrosynthesis,3a molecular electronics,4 

energy conversion,5 and immobilization of enzymes onto electrode 
surfaces.6 Research has involved both three-dimensional systems, 
such as redox polymers,7 and two-dimensional systems, such as 
Langmuir-Blodgett8,9 and self-assembled10 monolayers and bi-
layers. A key issue in the development of supramolecular redox 
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systems is the determination of the exact mechanism of charge 
transport within such systems and of the relationship between the 
rate of charge transport and the concentration of redox centers.11 

The transport of electrons through macromolecular structures 
containing redox molecules occurs via physical displacement of 
the redox molecules and electron hopping from one reduced 
molecule to an adjacent oxidized molecule. In solution, charge 
transport is dominated by physical diffusion of the redox molecules. 
Enhancement of the charge transport rate by electron exchange 
is predicted to occur in solutions containing mixtures of the ox
idized and reduced species as described by Dahms12a and Ruff 
et al.12b'c The diffusion coefficient, Z)ap, resulting from a com
bination of physical displacement and electron hopping is given 
by13 

Ap = /Vys + *„CE52/6 (1) 

where Dphys is the diffusion coefficient for physical displacement 
of the redox molecules, kn is the bimolecular rate constant for 
electron self-exchange, CE is the total concentration of redox 
species, and 8 is the center-to-center distance between redox centers 
at the time of electron transfer. The salient feature of the 
Dahms-Ruff equation is the expression of Z>ap as the sum of the 
contributions arising from physical motion and electron exchange 
with the concentration dependence of Z>ap permitting quantification 
of the two components. 

The Dahms-Ruff equation has been widely applied to redox 
polymer systems in which physical diffusion is much slower than 
in solution and may no longer exceed the rate of electron hopping 
or may even be negligibly slow as compared to electron hop
ping.14-20 On the other hand, Laviron21a and Andrieux and 

(11) Majda. Dynamics of Electron Transport in Polymeric Assemblies of 
Redox Centers. In Molecular Design of Electrodes Surfaces; Murray, R. W., 
Ed.; Techniques in Chemistry; Wiley: New York, in press. 

(12) (a) Dahms, H. J. Phys. Chem. 1968, 72, 362. (b) Ruff, I.; Friedrich, 
V. J. /. Phys. Chem. 1971, 75, 3297. (c) Ruff, I.; Friedrich, V. J.; Demeter, 
K.; Csaillag, K. /. Phys. Chem. 1971, 75, 3303. 

(13) (a) An error in the derivation of eq 1 in ref lib gave rise to an 
incorrect value (x/4) for the geometric factor. The correct value (see ref 
13b-d) for three-dimensional systems is l/6. (b) Ruff, I.; BotSr, L. J. Chem. 
Phys. 1985, 83, 1292. (c) Ruff, I.; Botar, L. Chem. Phys. Lett. 1986, 126, 
348. (d) Ruff, I.; Botar, L. Chem. Phys. Lett. 1988, 149, 99. 

OO02-7863/92/1514-3323S03.OO/O © 1992 American Chemical Society 



3324 J. Am. Chem. Soc, Vol. 114, No. 9, 1992 Blauch and Saveant 

Saveant21b have explicitly examined the behavior expected for 
redox polymer systems in which physical diffusion of the redox 
centers does not contribute to charge transport, because the redox 
centers are physically attached to the macromolecular structure 
(covalent or coordinative attachment or strong electrostatic 
binding) and have derived the relationship210 

Dip = fc„CEA*2/6 (2) 

where kn and CE have the same meaning as before. The distance 
Ax is defined as the thickness of a "monolayer" of redox centers, 
a definition that is not free of ambiguity. In the subsequent 
literature, eq 2 has most generally been considered as a particular 
limiting case of eq 1 corresponding to the absence of physical 
motion of the redox centers (Z)phys = 0): 

^ p = KxCn S2/6 

In fact, Dahms-Ruff theory describes charge transport arising 
from electron hopping between freely diffusion redox centers, 
whereas Laviron-Andrieux-Saveant theory describes charge 
transport arising from electron hopping between redox centers 
that are irreversibly attached to a supramolecular structure. They 
have in common the prediction of a linear variation of the apparent 
diffusion coefficient with the total concentration of redox centers. 

In recent years, the exact nature of the phenomena that control 
the rate constant kcx has been the subject of active discussion. It 
has been suggested140'153'0,1'22 that the rate of electron exchange 
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cannot exceed the rate at which reactants encounter each other; 
i.e., Kx cannot exceed the bimolecular diffusion-limited rate 
constant, k^, which is related to Z?pi,yS by23 

km = 8 ir8DphysNA (3) 

where NA is the Avogadro number. The appropriate value for 
k„ is then obtained from the classical Noyes expression24 

^-1 KT. = 1/^act + V^diff 

where kact is the bimolecular activation-limited rate constant for 
electron self-exchange. This line of reasoning was taken further 
by Ruff et al.12b who suggested that kw is determined not by Z)ph« 
but by Z)ap, meaning that the diffusion-limited rate constant itself 
increases with the concentration of the redox species. Another 
approach to the problem of charge transport in redox polymers 
has been to view the system as being composed of strictly immobile 
redox centers exchanging electrons by means of an "extended 
electron transfer" mechanism.25 

As is made clear in the following sections, the main reason these 
approaches have not produced a satisfactory description of the 
charge transport mechanism is that they have ignored the per
colation aspects of the problem. Charge transport arising from 
electron hopping between strictly immobile centers is funda
mentally a percolation process. Application of the percolation 
concepts26 to electron hopping between immobile redox centers 
leads to the following picture. The random distribution of redox 
centers yields a collection of clusters in which each molecule in 
a cluster is accessible by hops between molecules occupying ad
jacent sites. An electron is able to travel throughout a specific 
cluster but can never escape beyond the confines of that cluster. 
Charge transport, therefore, cannot occur across regions exceeding 
the size of the largest cluster. Below a critical concentration (the 
percolation threshold), all clusters are of finite, microscopic size; 
thus charge transport across macroscopic distances is impossible. 
Above the percolation threshold, a dominant cluster (the perco
lation cluster) spans the entire system, regardless of the system 
dimensions, making charge transport across macroscopic distances 
possible. 

When the redox centers are able to freely diffuse, the clusters 
within the system are constantly changing and reorganizing, re
sulting in percolation of electrons on a dynamic distribution of 
molecules. General analyses of dynamic percolation involving 
random renewal of the hopping probabilities have been developed 
in recent years.27'28 The theory has been applied to ionic charge 
transport in oil-water emulsions27"'29 and solid polymer electro
lytes.281" In the present case of electron hopping between redox 
centers, as the rate of physical motion increases relative to that 
of electron hopping, the microscopic distribution of redox centers 
eventually reorganizes sufficiently rapidly and thoroughly to 
eliminate any correlation between the geometry of the clusters 
existing during successive electron hops. In this limit, the 
mean-field approximation is valid and the Dahms-Ruff equation, 
originally derived for conditions where physical diffusion is much 
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and Mechanism, 3rd ed.; Wiley; New York, 1981; Chapter 7. 
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faster than electron exchange, should apply. 
In the following sections, we describe a Monte-Carlo simulation 

technique that we have employed to study the transition between 
static percolation and mean-field behavior. Our simulations in
volving free physical diffusion of the redox centers enable us to 
define the conditions under which the mean-field approximation 
is applicable. An important consequence of this analysis is that 
the Dahms-Ruff equation is inherently unable to describe the 
charge transport mechanism in systems where the physical motion 
of the redox centers is so slow or so restricted in range as to 
contribute negligibly to the overall conduction. This limitation 
is particularly true for systems in which the redox centers are 
irreversibly attached to the macromolecular structure but are not 
strictly immobile. Physical displacement of the redox centers 
around the anchoring points, i.e., "bounded diffusion", is possible, 
but such motion is obviously too restricted in scope to contribute 
directly to charge transport. Examples of such systems exist, with 
Z>ap being observed to increase with the concentration of redox 
centers and to approach zero as the concentration of redox centers 
approaches zero.14d'15b'2Ce These observations are consistent with 
the Laviron-Andrieux-Saveant equation, suggesting that this 
equation could serve as a basis for describing charge transport 
in systems containing irreversibly attached redox centers under 
mean-field conditions. In this case, as in the case for free diffusion, 
the question arises as to the possible ability of bounded diffusion 
to reorganize the percolation clusters sufficiently rapidly and 
extensively to achieve mean-field conditions. We have developed 
in this connection a simple and approximate model of bounded 
diffusion of the redox centers, which, when sufficiently rapid and 
extensive, ensures the establishment of mean-field conditions while 
the direct contribution of physical motion to the rate of charge 
transport remains negligible. In this limit, we have found that 
Z>ap is given by eq 2 with k„ = fcact; however, Ax2 is not equal to 
S2 but rather to 82 + 3 X2, in the three-dimensional case, and to 
52 + 2X2, in the two-dimensional case, where X characterizes the 
mean displacement of a redox molecule out of its equilibrium 
position. This same bounded-diffusion model was then incorpo
rated into Monte-Carlo simulations in order to describe the 
transition between static percolation and mean-field conditions 
as the rate and range of bounded diffusion increase relative to 
that of electron hopping. 

In the analyses below we have disregarded influences arising 
from the solvent, spectator ions, and the supramolecular structure. 
While the effects associated with these components are undoub
tedly important, they are secondary to the objectives of our study, 
which are to establish the fundamental laws of charge transport 
arising from electron hopping in assemblies of redox centers and 
to discuss the validity or lack thereof of mean-field approximations 
that have been previously used to describe such processes. In view 
of the recent development of two-dimensional assemblies of redox 
molecules, the results will be presented for both two- and three-
dimensional systems. 

Results and Discussion 

Simulation Model. In this investigation the redox system is 
modeled as a square (two dimensions) or simple cubic (three 
dimensions) lattice. The lattice is a small, but macroscopic, portion 
of the whole supramolecular system. The lattice comprises Nx, 
Ny, and Nz sites along the x-, y-, and z-axes, respectively, with 
redox molecules distributed randomly among the lattice sites. The 
distance, 5, between adjacent lattice sites is, in the framework of 
a hard sphere representation, the center-to-center distance of 
closest approach between two molecules; S is thus comparable to 
or slightly larger than the molecular diameter. Electron exchange 
is assumed to occur exclusively between molecules occupying 
adjacent lattice sites. The fractional loading, X, is the ratio of 
the total number of molecules, NE, to the total number of lattice 
sites, N7. The total concentration of lattice sites is CT = 1/(NA8"), 
where v is the dimensionality, 2 or 3, of the system. 

Electron hopping between adjacent redox centers can be 
modeled as a Poisson process with a time constant te representing 
the average time between attempted electron hops; fe is related 

to the activation-limited bimolecular rate constant according to 
*«t = 1/CCCT) 

The rate of electron hopping may also be characterized by an 
electron hopping diffusion coefficient 

Dt = 82/(2i>0 = kactCT82/(2i>) (4) 

which is a constant representing the electron-hopping diffusion 
coefficient for a single electron in a system at full fractional 
loading. At full fractional loading, the redox molecules cannot 
physically move, because there are no empty sites they can reach; 
therefore charge transport occurs solely by electron hopping, and 
£>ap = A, at X = 1. 

The rate at which a given electron hops between molecules is 
the frequency of attempted electron hops multiplied by the 
probability that the destination site is occupied by a molecule, 
which is (1 /0^" =

 (1 /0(CE/CT)- ^ n e bimolecular rate constant 
/cact is therefore l/(teCT) with the corresponding pseudo-first-order 
rate constant being fcactCE. 

In a manner analogous to that for electron hopping, the rate 
of physical displacement is characterized by a time constant tp 
representing the average time between attempted molecular hops 
in the absence of a potential energy gradient. The rate of physical 
motion of the redox molecules may also be characterized by a 
diffusion coefficient 

£phys = «7(2*p) (5) 
The conventional bimolecular diffusion-limited rate constant is 
related to fp by30 

km = 4p8^2DpkysNA = 2/(tpCT) (6) 

In the case of free physical diffusion of the redox molecules, 
Z>phys represents the contribution of physical motion to Z>ap at 
infinitely low fractional loadings (X -— O) where the "blocking 
effects", discussed later, are absent. In a large number of redox 
systems of practical interest, however, diffusion of the redox 
molecules is not free in the sense that the molecules are attached 
irreversibly to the supramolecular structure. An approximate and 
simple model of such situations consists in regarding each redox 
molecule as attached to its own individual equilibrium lattice site 
(x0, y0, z0) by an imaginary spring of force constant /s.

31 A 
molecule's potential energy, t, is therefore 

« = (fJDL(X - X0)
2 + O- - ^0)2 +(Z- z0)

2] (7) 

The probability, P1J, of an attempted molecular jump from site 
i to adjacent site j during a time interval, Af, is32 

where kB is the Boltzmann constant, T is the absolute temperature, 
and e, and e, are the molecule's potential energies at sites;' and 
j , respectively. P1J applies to motion to a specific adjacent site; 
the probability, P1, of attempted motion from site i to any adjacent 
site is the sum of the probabilities for motion to all adjacent sites: 

Pi - IZP1J (9) 

Pjj can also be expressed as 

P1J = (I/Iv)(At/tp) exp[-[((*/ - X0)
2 + (yj ~ y0)

2 + 
(Zj - Z0)

2 - (X, - X0)2 - (y, - ^ 0 ) 2 - (Z1 - Z0)
2) /2X 2]] 

introducing 
X = (2kBT/fsy/2 

(30) The difference between the factor 8TT5 in eq 3 and 4vd^2 in eq 6 arises 
from the difference in geometries. Equation 3 corresponds to spherical ge
ometry, whereas eq 6 applies to square (y = 2) or cubic (v = 3) geometry. 

(31) (a) The harmonic restriction of diffusive motion has been discussed 
and analyzed in ref 31b,c. (b) Chandrasekhar, S. Rev. Mod. Phys. 1943, 15, 
1. (c) Agmon, N.; Hopfield, J. J. / . Chem. Phys. 1983, 78, 6947; erratum 
1984, 80, 592. 

(32) Equation 8 is a linear free energy relation with a symmetry factor of 
V2-
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Figure 1. Variation of Dap/Dptiyi with 0/X in the absence of electron 
hopping for the simple cubic lattice. The solid line is the function /(0/X) 
(eq 27) with <t> = (Nx - I)S. The points are the results of simulations for 
x = 0.0625 (•), 0.250 (•), and 0.750 (•). 

which characterizes the range of molecular motion permitted by 
the imaginary spring. The physical motion of the redox molecules 
is thus governed by two parameters, tp and X (or/s). The former 
characterizes the time constant of the motion and the latter the 
spatial limitation of the motion of a redox molecule away from 
its equilibrium position attributable to the attachment to the 
macromolecular structure. 

Formally, there is a continuum of situations between conditions 
of bounded diffusion, where the direct contribution of physical 
motion to charge transport is negligible because the distance X 
is small compared to the total size of the system, and free diffusion 
(/", = 0), where the contribution of physical motion to charge 
transport is equal to Z)phys (eq 5). In order to describe the transition 
between these two limiting situtations we investigate the flux of 
electrons (including the electrons transported by physical dis
placement of the reduced molecules) through a macromolecular 
film of thickness cj> perpendicular to its faces (designated as the 
x-coordinate) in the case where electron hopping does not con
tribute to charge transport. The electron flux across the film is 
given by Fick's first law: 

/ , = A, 
d£e 
dx - - / > . . 

d Q 
dx 

where CB is the concentration of the reduced form of the redox 
couple A/B and CA is the concentration of the oxidized form. The 
flux of electrons, /e, is a function of the parameter 0/X. When 
</>/X - • 0, Z>ap approaches the apparent diffusion coefficient for 
free diffusion for that particular fractional loading, whereas when 
<t>/\ -*• "o, Dip approaches zero. As shown in Figure 1, the 
transition between the two limiting situations occurs over a small 
range of values for #/X (see the Appendix for the establishment 
of the analytical function that relates the ratio £ap/Aip,0/\=o t o 

the parameter </>/X). 
From inspection of Figure 1, it appears that in most cases the 

actual behavior of macromolecular motions will fall into one of 
the two limiting behaviors discussed above. These limiting be
haviors, denoted as "free diffusion" and "bounded diffusion", will 
be successively introduced into the simulations of the transition 
between static percolation and mean-field conditions with no 
attempt to introduce the intermediate behavior depicted in Figure 
1. Another reason for this simplification is that, in practice, most 
of the macromolecular systems will fall into one of the two limiting 
categories according to the presence or absence of an irreversible 
bonding between the redox centers and the supramolecular 
structure. 

Returning to situations where electron hopping contributes to 
charge transport, the transition between static percolation and 
mean-field behavior was simulated by means of a Monte-Carlo 
procedure. During a simulation, a concentration gradient is es
tablished along the x-coordinate by reducing all oxidized molecules 

(A) reaching x = 0 and oxidizing all reduced molecules reaching 
x = (Nx - 1)6. The flux of electrons, Je, across the lattice is the 
average of the number of electrons introduced at x = 0 and 
removed at x = (Nx - 1)5 per unit time. The apparent diffusion 
coefficient Z)ap is obtained from 

^ p = (dCB/dx) 
(10) 

Time is normalized by the time constant for electron hopping, 
tc. The time constant for physical motion, tp, is introduced as a 
dimensionless parameter, tjtp. A simulation consists of a series 
of dimensionless time intervals of duration AT during which the 
molecules and electrons are allowed to move at random. The 
probability of an electron attempting to hop to an adjacent 
molecule during a simulation time interval is AT.33 When an 
electron attempts to hop, an adjacent lattice site is randomly chosen 
as the destination site. If the destination site is occupied by an 
oxidized molecule, the electron is moved; otherwise the electron 
hop does not occur. 

In a similar manner, the probability of a freely diffusing 
molecule attempting to hop to an adjacent lattice site during a 
simulation time interval is (tJtp)Ar.33 In the case of bounded 
diffusion, this probability is P1 as defined by eq 9 with Af/rp 
replaced by (tjtp)Ar. When a molecule attempts to move, an 
adjacent site is randomly chosen as the destination site (for 
bounded diffusion, the probability of site j being the destination 
site is Pjj/Pj.). If the destination site is unoccupied, the molecule 
is moved; otherwise the molecular displacement does not occur. 
Technical details concerning the simulations are given in the 
Appendix. Known limiting behaviors were simulated in order to 
test the integrity and precision of the simulation technique. One 
such behavior is the static percolation expected when the molecules 
are completely immobile (te/tp = 0 or, equivalently, £>phys/Z)e = 
0). Our simulations yield variations of Z>ap vs X consistent with 
static percolation behavior,26 as evidenced by the dashed lines in 
Figure 2. Published static percolation expressions26 concern 
transport of electrons under an electric field rather than under 
a concentration gradient. The conductivity, a, of percolating 
electrons is related to the apparent diffusion coefficient by the 
general linear-response expression281"'34 

a(X) = Ne2Dap/(Ic3T) 

where N is the number of charge carriers (i.e., the number of 
electrons in the percolation cluster) and e is the electron charge. 
At full fractional loading N = NT and £>ap = De, thus 

D, { c(l) ) N \ ff(l) )P(X) 

where P(X) is the percolation probability. 
In the transition from static percolation to mean-field conditions, 

which is dynamic percolation, the random walk of electrons be
tween moving molecules also leads to an apparent diffusion 
coefficient that was computed using Fick's first law. The value 
of Z»a„ should be independent of the magnitude of the concentration 
gradient employed in the simulations; simulations employing 
various concentration gradients have verified this expectation. 

Free Diffusion and Electron Hopping. Figure 2 depicts the 
variation of the apparent diffusion coefficient with the fractional 
loading of redox molecules for increasing values of tjtp (= 
Z>phys/Z)e). As anticipated, the increase in the rate of physical 
motion as compared to that of electron hopping progressively 
"washes out" the critical behavior observed for static percolation; 
i.e., £>ap = 0 below the percolation threshold, an abrupt onset of 

(33) This probability derives from Poisson statistics (see refs 35a and 36b) 
and is rigorously correct only when AT is substantially less than unity. In 
practice, we have found AT = 0.25 to be sufficiently small to reduce the errors 
to acceptably low levels (roughly 2-3%). Values of AT were chosen to be as 
large as possible to keep computational times to a minimum. The same 
considerations also apply to the probability (tjtp)&r. 

(34) (a) Scher, H.; Lax, M. Phys. Rev. B 1973, 7, 4491. (b) Lax, M. Phys. 
Res. 1958, 109, 1921. (c) Lax, M. Rev. Mod. Phys. 1960, 32, 25. 
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Figure 2. Variation of D^/Dt (A, B) or D^/D^y, (A', B') with x for square (A, A') and simple cubic (B, B') lattices for free diffusion. Points are 
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behavior (vide supra). The dotted lines represent mean-field behavior with/c given by eq 17. The solid lines represent mean-field behavior with/. 

conduction at the critical fractional loading, and a linear variation 
of Z>ap with X reaching Dt at X = 1, as represented by the dashed 
line in Figure 2. The solid lines represent the variation expected 
on the basis of the mean-field approximation according to the 
following treatment. 

To compute the mean-field expression for the apparent diffusion 
coefficient, we start with the general random walk formula:35a,36b 

Dip=f{r'x)/(2v) ( H ) 

where / is the frequency of random jumps and (r* r) is the 
mean-squared displacement of each jump. To proceed, we consider 
the frequency of random jumps to be equal to the frequency of 
electron hops, which i s / = X/tc. The vectorial displacement, r, 
of an electron between two successive electron hops can be re
garded as the sum of the vectorial displacement, re, of the electron 
resulting from the electron hop and the vectorial displacement, 
rp, of the host molecule between electron hops. Assuming the 
electron hops and physical hops are uncorrelated, 

<r* r> = <r.' re> + <rp* rp> (12) 

because electron hops always occur over a distance 5, (re* re) = 
52. 

On the other hand, the mean-squared displacement of a freely 
diffusing molecule during a period of time t is 

<r„- rp>, = (1 - X)fcS
2(t/tp) = 2vDpbys(l - X)f + 2v (13) 

(35) (a) Kehr, K. W.; Kutner, R.; Binder, K. Phys. Rev. B 1981, 23, 4931. 
(b) Kutner, R.; Kehr, K. W. Philos. Mag. A 1983, 48, 199. 

(36) (a) Le Claire, A. D. In Physical Chemistry-An Advanced Treatise; 
Jost, W., Ed.; Academic Press: New York, 1970; Vol. 10, Chapter 5. (b) 
Kehr, K. W.; Binder, K. In Topics in Current Physics: Applications of the 
Monte Carlo Method in Statistical Physics, 2nd ed.; Binder, K., Ed.; 
Springer-Verlag: New York, 1987; Vol. 36, Chapter 6. 

where the blocking factor (1 - X) accounts for the reduction in 
the frequency of molecular displacements attributable to ob
struction by other molecules. An attempted molecular dis
placement is successful only if the destination site is unoccupied, 
the probability of which is, on average, 1 - X; hence the effective 
hopping frequency is (1 -X)/tp instead of l/fp. At full fractional 
loading (X = 1) no physical motion occurs, because there are no 
unoccupied lattice sites into which a molecule can move. 

The obstruction of molecular motion by other molecules gives 
rise to correlation effects, accounted for by the correlation factor 
/c, for which the blocking term does not account, the most im
portant effect being the increased tendency for a molecule to return 
to the site it most recently vacated. If a molecule has just moved 
from site i to site j , site i is more likely to be unoccupied than 
the other sites adjacent to s i t e / therefore, attempted movement 
back to site i is more likely to be successful than attempted 
movement to other sites. This tendency to backtrack reduces the 
overall distance traveled by the molecule, leading to an observed 
diffusion coefficient less than that predicted by Z>phys(l - X). The 
origin and implications of correlation effects (in the absence of 
electron hopping) have been investigated in detail.35""37 

In order to calculate the correct value for (rp* rp>, it is necessary 
to determine the distribution of times, t, between successive 
electron hops. The waiting time between electron hops is governed 
by Poisson statistics,358 with the probability that an electron waits 
a time t between successive electron hops being (X/Q exp(-Xt/Q 

(37) (a) Fedders, P. A.; Sankey, O. F. Phys. Rev. B 1978, 18, 18. (b) 
Murch, G. E.; Thorn, R. J. Philos. Mag. A 1979, 39, 673. (c) Nakazato, K.; 
Kitahara, K. Prog. Theor. Phys. 1980, 64, 2261. (d) Koiwa, M.; Ishioka, S. 
J. Stat. Phys. 1983, 30, 477. (e) De Bruin, H. J.; Murch, G. E. Philos. Mag. 
1973, 27, 1475. (f) Murch, G. E.; Thorn, R. J. /. Phys. Chem. Solids 1977, 
38, 789. 
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dt. The properly weighted mean-squared physical displacement 
between electron hops is therefore 

<V rP>= f J exp(-*J<rp*rp>,dr (14) 

Is integration of which yields 

<rp* rp) 

It follows from eqs 11, 12, and 15 that 

D,p = Dpiiys(\-X)fc + DJ< 

(15) 

(16) 

showing that the mean-field approximation leads to Dahms-
Ruff-type behavior in which the blocking of physical diffusion 
is accounted for13b~d by the factor 1 - X in the first term. The 
correlation factor,/c, does not appear in previous derivations.13b_d 

The value of the correlation factor has been derived in previous 
studies370 for the case where tjtp —• <= (Z>e = 0): 

(2-A)Zc^i 
/ c Vc^i + (1 " V^iVC ° 7 ) 

where the correlation factor at full fractional loading, fcjc=[, is 
0.466942 and 0.653109 for the square and simple cubic lattices, 
respectively.37M The predictions of Dahms-Ruff behavior (eq 
16) with Dt = 0 and^ given by eq 17 are represented by the dotted 
lines in Figure 2. 

The simulations reveal that correlation effects vanish as the 
rate of electron hopping approaches that of physical displacement. 
For tjtp = 2, the simulated values of Dip/DipJ(=0 coincide fairly 
closely with the mean-field values using / c = 1. We have not 
undertaken a detailed analysis of the correlation effects observed 
for various values of tjtp, but we can offer a qualitative expla
nation of the observed behavior. The correlation effects associated 
with physical displacement are attributable to the fact that a 
molecule is more likely to return to the site it most recently vacated 
than to move to any other adjacent site. The tendency to backtrack 
occurs because the site just vacated by the molecule has an 
above-average chance of being unoccupied. For this same reason, 
electron hops to the site just vacated by the molecule are less likely 
to occur than hops to other adjacent sites, because the site just 
vacated has a below-average change of being occupied by an 
oxidized molecule. The simulations suggest that when tc = tp, 
these two effects exactly cancel and/c = 1. 

The simulation results shown in Figure 2 clearly show that 
mean-field behavior is reached only when Z)phys is at least as large 
as De. Whenever physical diffusion is slower than electron hopping, 
percolation effects are observed. These findings have an important 
consequence for systems in which the physical motion is so slow 
as to contribute insignificantly to charge transport (Z>phys« D1.). 
In such cases, the variation of Z)ap with X is expected to display 
static percolation behavior instead of the commonly anticipated 
linear variation passing through the origin. We therefore conclude 
that the Dahms-Ruff approach is unsuitable for the description 
of charge transport by means of electron hopping in systems where 
the redox centers are irreversibly attached to the supramolecular 
structure. It is also interesting to note, in the framework of the 
present model, that Dahms-Ruff behavior, when effectively 
reached, leads to a descending (or at best horizontal) variation 
of the apparent diffusion coefficient with the fractional loading 
and not to the commonly expected ascending variation. 

Bounded Diffusion and Electron Hopping. As discussed above, 
the concept of bounded diffusion is better suited than that of free 
diffusion for the mean-field description of charge transport in 
systems where the redox centers are irreversibly attached to the 
supramolecular structure. Simulation data for bounded diffusion 
are shown in Figure 3. The variation of the apparent diffusion 
coefficient with the fractional loading depends upon two param
eters instead of one, as in the preceding case. One parameter is 
again tjtp (=Dptiys/Dc), which compares the rates of electron 
hopping and physical displacement. The other is X/5, which 

compares the range of molecular motion permitted to the attached 
redox center by the supramolecular structure to the electron 
hopping distance. Whenever one of these two parameters is small, 
percolation effects are observed, static percolation behavior being 
reached asymptotically as either approaches zero (Figure 3). 

Mean-field behavior is expected when both parameters become 
large, i.e., when the rate and range of physical displacement are 
sufficiently large to completely scramble the molecular clusters 
between successive electron hops, thereby eliminating all trace 
of percolation behavior. For establishing the mean-field variation 
of Z)ap with X, we follow an approach similar to that employed 
above for the case of free diffusion. We start from eqs 11 and 
12, but the expression for (rp* rp>, is now different from eq 13, 
because restriction of the physical motion leads to a statistical 
limit to how far the electron can be carried by a molecule. Ex
tending the one-dimensional treatment of Chandrasekhar31b'38 to 
two and three dimensions yields the following expression for (rp" 

<'P" rp>( = <rp* r p>° 1 - expl -
/ (l-X)fcPt\ 

\ (rp Tp)Jp J 
(18) 

where the limiting mean-squared displacement, (rp* rp)„, is v\2. 
It should be noted that the treatment of Chandrasekhar does 

not address blocking or correlation effects; we have accounted for 
these effects by replacing the diffusion coefficient in Chandra-
sekhar's formula with D^(I -X)fc. Although the blocking factor 
should provide an accurate correction for the actual frequency 
of physical jumps, it is unlikely that the/c derived by Nakazato 
and Kitahara370 is exactly applicable to restricted diffusion. Figure 
4 compares simulated values39 of (rp* rp>, with the predictions of 
eq 18. For relatively low fractional loadings where correlation 
effects are rather minor, there is excellent agreement between the 
simulations and eq 18. At high fractional loadings where cor
relation effects are more important, small discrepancies exist 
between the simulated and theoretical values. 

Integration of eq 21 using (rp
# rp), as defined in eq 25 yields 

<r • rp> = , X V O + P) (19) 

where p is the ratio of the mean-squared displacement for free 
diffusion after a time tjX (the average time between electron 
hops) to the maximum mean-squared displacement, 

•NSX;) (20) 

Combining eqs 11 and 19 with/= X/tc yields a general formula 

0ap = DJi (21) 

where the electron hopping diffusion coefficient Dc is 

1 
Z > . = 

Ivt. 
h1 + KX2I (22) 

The limiting expression when physical motion is much faster than 
electron hopping is 

D, = (52 + cX2)/(2<) (23) 

(38) The equations of ref 31b have been reduced to the limit where o> « 
/3 (notation of ref 31b) in which the time required to diffuse across the 
potential energy well is much longer than the fundamental period of the 
corresponding harmonic oscillator. 

(39) These simulations employed the same algorithm described in the text 
and Appendix with the following modifications. Periodic boundary conditions 
were applied along the x-axis, and the electrode reactions at x = 1 and x = 
Nx were eliminated (all molecules were reduced and no electron hopping 
occurred). The simulations were run until a steady state was reached, at which 
time the positions of the molecules were recorded. The simulation was con
tinued with the mean-squared displacement of the molecules output at regular 
intervals. 

(40) (a) Von Smoluchowski, M. Ann. Phys. 1915, 48, 1103. (b) Von 
Smoluchowski, Z. Phys. Chem. 1917, 92, 129. (c) Wilemski, G. J. Stat. Phys. 
1976, 14, 153. 
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Figure 3. Variation of Dif/Dc with x for square (A, A') and simple cubic (B, B') lattices for bounded diffusion. The points in A and B are simulation 
results for X/5 = 1.0 and tjtt = 0.1 (D), 1.0 (v), 10 (•), and 100 (A). The points in A' and B' are simulation results for \/i = 10 and tjtt = 0.7 
(O), 1.0 (•), 1.5 (•), 2.0 (•), and 3.0 (A, A' only). The dashed lines represent static percolation behavior (vide supra). The dotted lines represent 
mean-field behavior (eqs 20-22). The solid lines represent the limiting mean-field behavior for t,/tt — » (eqs 21 and 23). 

3 5 , r— i i i i the presence of electron exchange makes the bounded physical 
motion significant. There is a synergy between restricted physical 
diffusion and electron exchange in that physical motion contin
uously rearranges the distribution of redox centers, allowing the 
redox molecules to encounter each other, while electron hopping 
circumvents the diffusive restrictions imposed by the supramo-
lecular structure, allowing physical motion to contribute to charge 
transport. 

Regardless of the magnitude of tjtp, physical motion becomes 
increasingly less important as X-- 1, because blocking shuts off 
physical motion of the redox centers. For fractional loadings near 
unity, the rate of physical motion is sufficiently small that the 
distance traversed by a reduced molecule between successive 
electron hops is very small, sufficiently small that the molecular 
diffusion can be viewed as unrestricted. In the limit p — 0 (X 
— 1), eqs 21 and 22 reduce to Z>ap = Z>e. 

As emphasized above, eqs 21-23 are mean-field expressions 
and as such are applicable only when tjtp > 1 (vide supra). This 
fact is emphasized in Figure 3 (A and B) where simulated values 
(points) of Dip/De as a function of X are compared with the 
predictions of eqs 21 and 23 (dashed lines) for X = 5 and various 
values of tjtp. As is evident from the figure, these equations are 
only applicable when the rate of physical motion exceeds that of 
electron hopping. In addition, the range of physical motion, 
characterized by X, must be sufficiently large to permit significant 
encounters between a molecule and its nearest neighbors. This 
criterion is just barely met by X = S, as evidenced by the slight 
negative deviations of the simulated points from the theoretical 
lines at very small values of X. 

The range of the restricted diffusion is predicted to have an 
important influence on the apparent diffusion coefficient, a pre
diction that is verified in Figure 3 (A' and B'), where plots of 

200 

t/tp 
Figure 4. Variation of <rp" rp>,/62 with t/tv in a simple cubic lattice. The 
dashed lines represent the predictions of eqs 13 and 18 with/c given by 
eq 17. The points are the results of simulations for x = 0.25 and X -» 
<= (•), x = 0.25 and X = 25 (•), and x = 0.75 and X = 26 (•). 

Equation 21 with Dt given by eq 23 can be also be derived in 
the context of Fick's second law by a different method, which is 
presented in the Appendix. Under conditions where physical 
diffusion is very rapid, the direct proportionality of Z\_ with X 
predicted by Laviron21a and by Andrieux and Saveant21b is ob
served. The value of Ax2 in these derivations is now shown to be 
equal to 52 + v\2 rather than simply S2, as would be the case if 
the Laviron-Andrieux-Saveant behavior were regarded as a lim
iting case (Z>.hys = 0) of Dahms-Ruff behavior. The term j-X2 

accounts for the contributions arising from physical displacement. 
Although there is no contribution to charge transport from 
bounded physical diffusion in the absence of electron exchange, Aip/^e vs X are presented for tjtp = 10 and various values of 
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\/8. For the simple cubic lattice (Figure 3B'), the agreement 
between the simulation results and the theoretical predictions is 
very good (given the uncertainty in the simulation results), with 
Z)ap observed to be directly proportional to X at low fractional 
loadings with a slope given by eq 23. The same behavior is 
observed for the square lattice when \jb = 3, but for smaller values 
of X/ 8 a significant negative deviation from theory is observed 
at low fractional loadings. 

The negative deviations in Figure 3A' for X/6 = 1, 1.5, and 
2.0 are consistent with the inability of the molecules to interact 
readily with their nearest neighbors at low fractional loadings. 
The harmonic model for bounded diffusion leads to a Gaussian 
spatial distribution of molecules about their fixed points. For the 
square lattice, the probability of finding a molecule within 1.7X 
of its fixed point is 95%; hence a molecule in two dimensions 
effectively occupies an area of 3irX2. Nearest neighbor molecules 
interact significantly only when their areas of occupancy overlap, 
which occurs, roughly, when X > 52/(3irX2). Equations 21 and 
23 are therefore expected to apply, for X > 0.01, only when X > 
35. The corresponding analysis in three dimensions, where 
molecules spend 95% of their time within 2X of their fixed points, 
indicates that significant intermolecular interactions occur when 
X > 353/(32irX3); thus eqs 21 and 23 apply, for X > 0.01, only 
when X > 1.45. 
Conclusions 

The interdependence between physical displacement and 
electron hopping in propagating charge through supramolecular 
redox systems leads to two limiting behaviors: percolation behavior 
Ĉdiff < âct) and mean-field behavior (km > fcact). When physical 
motion is either nonexistent or much slower than electron hopping, 
charge propagation is fundamentally a percolation process, because 
the microscopic distribution of redox centers plays a critical role 
in dictating the rate of charge transport. Any self-similarity of 
the molecular clusters between successive electron hops imparts 
a memory effect making the exact adjacent-site connectivity 
between the molecules important. In the opposite extreme, rapid 
molecular motion thoroughly rearranges the molecular distribution 
between successive electron hops, thereby eliminating an electron's 
memory of its previous environment. Under such conditions, 
mean-field behavior is observed. 

Theoretical treatments 1^13^2la 'b leading to the Dahms-Ruff 
or Laviron-Andrieux-Saveant equation are invariably based upon 
an assumption that is justifiable only under mean-field conditions. 
These analyses treat the occupancy of each site in a time-averaged 
manner; that is, a specific site is assumed to be occupied a certain 
percentage of the time. If no electron transfer can occur between 
two sites at one instant in time, perhaps because one site is 
unoccupied, electron transfer might nevertheless be possible at 
a later time, because the site might have become occupied. Under 
mean-field conditions, the system forgets its state at all earlier 
times. This lack of memory is only possible if the system re
arranges rapidly compared to the rate of electron exchange. 
Utilization of the mean-field approximation therefore presupposes 
kdiff > fcacp 

For this reason, the Dahms-Ruff approach leading to eq 16 
(when blocking and correlation effects are taken into account) 
does not accurately describe charge propagation occurring by 
means of electron hopping in systems where the redox centers are 
irreversibly attached to the supramolecular structures and are 
thereby unable to contribute directly to charge transport through 
their physical motion. Indeed, when Z>phys is made smaller and 
smaller, eventually becoming less than De, percolation effects 
appear. When Dj,byi becomes negligible compared to D1., the 
characteristic static percolation behavior (Z)ap = 0 below the 
percolation threshold and an abrupt onset of conduction at the 
critical fractional loading) should be observed. In the framework 
of the present model, it is noteworthy that for freely diffusing redox 
centers, the fulfilment of mean-field conditions, required for the 
validity of the Dahms-Ruff equation, implies a descending (or 
at best horizontal) variation of the apparent diffusion coefficient 
with the fractional loading and not the commonly expected as
cending variation. 

The concept of bounded diffusion provides an attractive 
framework for modeling charge transport occurring via electron 
hopping in systems where the redox centers are irreversibly at
tached to the supramolecular structures. Provided the rate of 
bounded diffusion is much greater than that of electron hopping 
and the range of bounded diffusion is sufficiently large to allow 
interactions between neighboring redox centers, the mean-field 
approximation can be applied. Under these conditions, for 
fractional loadings commonly employed in practice, the Lavi
ron-Andrieux-Saveant expression (eq 2) predicting the direct 
proportionality between Z)ap and X applies. The rate constant 
appearing in eq 2 is the activation-controlled rate constant for 
electron exchange and not a combination of diffusion- and ac
tivation-controlled rate constants. This does not mean that physical 
motion is not significant or is not accounted for in eq 2. The rate 
and range of physical motion must, in fact, be larger than those 
of electron hopping for the equation to be valid. Moreover, the 
characteristic mean-squared displacement Ax2 is not equal to the 
square of the electron hopping distance, 82, but rather to 82 + vX2, 
where X characterizes the range of physical displacement permitted 
by the irreversible attachment of the redox centers to the su
pramolecular structure. The bounded physical motion should be 
taken into account when attempting to derive the rate constant 
of electron hopping from experimental values for the apparent 
diffusion coefficient. 

An important simplication employed in this study is the as
sumption that electron exchange occurs only across a distance 8 
representing the center-to-center distance of closest approach for 
the redox molecules. Numerous studies41 of electron transfer have 
demonstrated the possibility of long-range electron transfer, with 
the rate of electron transfer across a distance r being 

*«tW = *«t(«) «p(-(r " *)/y) 

where the parameter y characterizes the rate of drop-off in fcact(r) 
with increasing r being typically on the order of 0.07-0.14 nm.41c 

Long-range electron transfer has been suggested to be important 
in charge transport in supramolecular systems.25 In the mean-field 
limit, where the Laviron-Andrieux-Saveant equation applies, 
long-range electron transport does not appear to be especially 
significant. Electron transfer over all distances is readily incor
porated into the existing theory by employing suitably weighted 
values for the electron-transfer rate constant and the mean-squared 
hopping distance. Because y « (S2 + vX2)1/2, the effects of 
long-range electron transfer will be small, with kiCt and 52 being 
replaced, to a first approximation, by /cact(l - y/8)2 and (5 + 7)2, 
respectively. Under conditions where X « 8, i.e., when percolation 
interferes, however, long-range electron transfer may play an 
important role by providing a mechanism by which an electron 
can escape from its current cluster without significant rear
rangement of the system. 
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Appendix 
Simulations. A typical simulation was performed in the fol

lowing manner. The lattice was constructed and the appropriate 
number of redox molecules introduced at random lattice sites; for 
simulations involving restricted diffusion, the molecules were 
initially located at their fixed sites. All simulations employed 
boundary conditions in which all molecules at x - 8 were reduced 
and all molecules at x — NxS were oxidized. The initial oxidation 
states of the molecules were chosen to produce a linear concen
tration gradient of reduced molecules (i.e., the steady-state con-

(41) (a) For a review of this field see parts b and c and references cited 
therein, (b) Chance, B.; DeVault, D.; Frauenfelder, H.; Marcus, R. A.; 
Schrieffer, J. R.; Sutin, N., Eds. Tunneling in Biological Systems; Academic 
Press: New York, 1979. (c) Mayo, S. L.; Ellis, W. R.; Crutchley, R. J.; Gray, 
H. B. Science 1986, 233, 948. 
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centration profile) in order to reduce the simulation time required 
to reach a steady state. 

Dimensions for square lattices were Nx = Ny = 32 (N2 = 1) 
and for simple cubic lattices Nx = Ny = N2 = 24, except for static 
percolation simulations on the square lattice (open circles in Figure 
IA) where Nx = Ny = 64 and in Figure 3 where Nx = Ny = N2 

= 16. To increase the effective size of the system, periodic 
boundary conditions were employed along the xy- and xz-
boundaries, so that molecules or electrons jumping, for example, 
from y = Ny8 to y = (Ny +1)5 were actually moved from y = 
Ny8 toy = 8. This technique gave the impression of an infinite 
system along the y- and z-axes. For restricted diffusion, it was 
necessary to know the absolute displacement of a molecule from 
its fixed site. To correctly determine this distance, a record was 
kept of each passage of a molecule across a lattice boundary in 
order to permit determination of each molecule's effective position 
(which may lie far outside the lattice). 

Each simulation consisted of a series of time intervals (typically 
104-106) during which the molecules and electrons were allowed 
to move as described above. The values of Ar and (tJtp)Ar were 
always <0.25. At the end of each time interval, oxidized molecules 
reaching x = 8 were reduced and reduced molecules reaching x 
= NxS were oxidized. The total numbers of electrons introduced 
and removed from the system during each time interval were 
averaged and added to the cumulative charge gT, which was 
output periodically. Plots of g T versus the simulation time t were 
examined to determine when a steady state, characterized by a 
linear increase in Q1 with t, had been reached. The apparent 
diffusion coefficient was calculated from the measured slope of 
the steady-state plot g T vs t using 

Ap = 
Nx(Nx- 1)52 dgT 

27VF dr 

For free diffusion the steady state was quickly established, gen
erally within tens or hundreds of t ime intervals. For restricted 
diffusion, however, very long times ( > 1 0 5 intervals) were some
times necessary to achieve the steady state. This problem was 
most severe for restricted diffusion near full fractional loading 
(when equilibration of the molecules within the parabolic energy 
well was very slow) or when tjtp was significantly less than 0.1 
or greater than 10. 

In order to obtain good statistics, multiple simulations were 
performed for the same set of parameters (Nx, Ny, N2, NE, A T , 
(tc/tp)AT, and X/<5) using different sets of random numbers, and 
the resulting values of / ) a p were averaged. This procedure was 
especially important in cases where the initial distribution of 
molecules was critical in determining the apparent diffusion 
coefficients (i.e., static percolation and highly restricted diffusion). 
Most simulations of Z)ap/£)e or Dip/Dpbys were performed to a 
precision of 2%. Simulations of restricted diffusion with tjtp = 
100 were especially difficult, and the uncertainty in this data was 
larger. 

Computat ions were performed using programs writ ten in 
F O R T R A N and executed on a C D C Cyber 962 computer or on 
an FPS M64330 array processor attached to a D E C V A X station 
I I / G P X . Simulat ion times for computing a single value of />ap 

varied from several minutes to several hours, depending upon the 
choice of parameters and the desired precision. 

A few of our simulations duplicated previously published work, 
specifically, the 2D and 3D static percolation plots26b'c (open circles 
in Figure 2), the 2D dynamic percolation plot27a for tjtp = 0.01 
(solid triangles in Figure 2A), and the plots for physical diffusion 
in the absence of electron hopping for the simple cubic lattice36b,37f 

(X in Figure 2B')- In all cases, our simulations yielded values 
in excellent agreement with the published results. 

Derivation of / ( 0 / X ) . In a system where the molecules are in 
thermal equilibrium, the Boltzmann distribution, 

p(x,x0) = p0 expl 

can be employed to determine the probability p(x,x0) of finding 

(-W) 

a molecule with fixed point x0 at position x. For a one-dimensional 
system in which x lies within the interval [0,0], the normalization 
constant p0 is 

Po -GsO/K^M?)] 
The steady-state behavior of a diffusing, reduced molecule in 

a potential energy well is described by the general diffusion 
equation4 0 

0 - A>P,#/x=o dx 

dpB(x,x0) pB(x,x0) de(x,x0) 

dx kuT dx 
(24) 

where pB(x,x0) is the probabili ty of finding a reduced molecule 
with fixed point x0 at position x and the molecule's potential 
energy, t(x,x0), is defined by eq 7. W e define b(x,x0) to be the 
probability that a molecule with fixed point X0 found at position 
x is reduced; thus 

pB(x,x0) = p(x,x0) b(x,x0) 

Substitution of the expressions for pB and e(x,x0) into eq 24 yields 

d2b(x,x0) 2, , db(x,x0) 
0 = ^ - ^ ( * - X o ) - ^ -

(db(x,x0\ rx ((<x-Xo\2\ 

the solution of which, obtained by explicit integration, is 

da = 

*(0,x0) 

If the concentration, CE , of fixed points is uniform throughout 
the system, the concentrat ion, C B (x) , of reduced molecules at 
position x is 

CB(x) = Cu \ pB(x,x0) dx0 = CE\ p(x,x0) b(x,x0) dx0 

(25) 

The probability tha t a molecule at x = 0 or x = 0 is reduced is 
independent of the molecule's fixed point; therefore the mean 
concentrat ion gradient across the system is 

(dCB(x)\ 

\ dX /n 

C B (0) - C8(O) b(4>) - *(0) _ 

0 = Q 0 = 

CJ db(x,x0)\ r t ((x-x0\
2\ 

dx 

The steady-state flux of B (and hence of electrons), Je, across 
the system 

_ f*\dPB , PB de 
dx0 = 

J.« db(x,x0) 
P(x,x0) — dx0 (26) 

must be the same at all points. Evaluat ing eqs 25 and 26 at x 
= 0 and substi tuting these expressions into eq 10 yield 

Ap D*M/^\dcB/dx\ 

C* ,„ J db(x,x0)\ 
;J>'*4^*-j dx 0 = 

x=0 

0ap,*/X=oW>O 
where /(0/X) is defined by 

/(0/X) (erf(0 - a) + 

*/x 
~ irl'2\\)jo l ( 

erf(a)) J * / X exp((/3 - a)2) d/s]"' da (27) 

Derivation of Fick's Second Law for Restricted Diffusion. W e 
derive Fick's second law for a one-dimensional system of infinite 
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size in which the rate of molecular motion is sufficiently fast to 
maintain thermal equilibrium at all times; the normalization 
constant for the Boltzmann distribution is p0 = l/(Xir'/2) for x 
on (-°°,+co). The concentration of reduced molecules B at point 
x at time t is given by an expression analogous to eq 25, which 
when integrated over all x0, with b(x0,t) expanded as a Taylor 
series about x = x0, yields 

X +QD 

b(x0,t) p(x,x0) dx0 = 

_ f ll\\2"(d2"b(x,t)\ 
C*hnh) \ Sx* Jx 

Note that the function b(x,x0) defined in the preceding section 
is independent of the molecule's position for a system of infinite 
size but does dependent upon time for non-steady-state conditions; 
hence we write b(x0,t) instead of b(x,x0). Truncation of eq 28 
after the first term introduces negligible error so long as the 
thickness of the diffusion layer is much larger than X. Therefore, 
Fick's second law 

dCB(x,t) d2CB(x,t) 
= A,, 

* CEb(x,t) (28) 

at 

is completely equivalent to 

db{x,t) 

dt = A 

dx2 

d2b(x,t) 

dx2 (29) 

Because the molecules are always at thermal equilibrium within 
the potential energy well, there is no net transport of charge arising 
from physical motion. The time dependence of b(x,t) arises 
exclusively from electron hopping; hence we apply the standard 
rate laws to evaluate the rate of change in b(x,t) arising from 
electron exchange reactions. To account for all electron-transfer 
reactions affecting b{x0,t), we must locate all molecules possessing 
fixed point x0, their current positions being x, and all molecules 

of the opposite oxidation state within a distance 5 of x, such 
molecules having fixed points at X0. The rate constant for electron 
exchange between two specific molecules is fcact divided by the 
reaction surface "area" (recall that fcact applies to electron transfer 
to any site within the reaction distance 5). In one dimension this 
quantity is fcact/2, in two dimensions fcact/(2ir6), and in three 
dimensions fcact/(4ir62). The resulting master kinetic equation in 
one dimension is 

db(x0,t) K t ^ E 

dt 2X2ir X . X . W*°'') " *CV))/Kx,x0) X 
(p(x-8,x0) + p(x+8,x0)) dx dx0 

Expansion of b(x0,t) as a Taylor series about X0 followed by 
integration over x0 and x, using binomial series expansions where 
necessary, yields 

db(x0,t) 

dt f f l c t ^ l 

^(d2"b(x,t)\ n n (\/2)2k52"-2k 

m?o *5,(*-iw)!(2»-2*)! 
(30) 

The derivations in two and three dimensions are completely 
analogous to that shown above, except that the reaction surface 
is a circle in two dimensions and a sphere in three dimensions; 
the exact expressions for db{x0,t)/dt in two and three dimensions 
are, of course, slightly different than that of eq 30. Provided the 
diffusion layer is much larger than X, only the first term in the 
series expansion for db(x0,t)/dt is significant. On the basis of the 
derivations for v = 1,2, and 3, with terms for n > 2 discarded, 
a general equation is obtained 

db{x0,t) 

dt 
^ a c t C E ( 5 2 + ,X2) 
LV 

(d2b(x,t)\ 

\ d*2 J* 
which is identical to eq 29 with Z>ap given by eqs 20 and 22 (written 
using fcactCE instead of X/te). 
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Abstract: 2D NMR experiments performed on both the oxidized and reduced form of the high potential iron protein (HiPIP) 
from Chromatium vinosum, a paramagnetic iron sulfur protein for which the crystal structure is known in both oxidation 
states, allowed us to detect a number of scalar and dipolar connectivities of the isotropically shifted signals. On this basis 
it was possible to firmly identify the signals of the /3-CH2 and a-CH protons of the cluster-liganded cysteines and perform 
their sequence-specific assignments. The assignments mainly rely on the observation of NOESY cross peaks from /3 or a Cys 
protons to protons assigned to the few aromatic residues surrounding the cluster. This is the first sequence-specific assignment 
of Cys /3-CH2 protons for a Fe4S4 cluster. In the light of existing experimental evidence from Mossbauer data and of the 
theoretical model describing the magnetic coupling of the metal centers in the oxidized form, the present assignment establishes 
which iron ions of the oxidized cluster are in a pure ferric state and which are in a mixed valence state. These findings may 
be relevant as far as the actual mechanism of electron transfer is concerned. In addition, information is obtained on the angular 
dependence of the /3-CH2 hyperfine shifts in iron sulfur systems. 

Introduction 
The understanding of the functional properties of iron-sulfur 

proteins1 stands on the knowledge of the electronic structure of 
the clusters and on the location of the various types of iron ions 

* University of Florence. 
'University of Bologna. 

within the protein frame. Progress in the knowledge of the 
electronic structure of iron-sulfur clusters is due to a variety of 

(1) (a) Lovenberg, W., Ed. Iron Sulfur Proteins; Academic Press: New 
York, 1973, Vol. 1, 2; 1977, Vol. 3. (b) Spiro, T. G., Ed. Metal Ions in 
Biology; Wiley-Interscience: New York, 1982; Vol. 4. (c) Sweeney, W. V.; 
Rabinowitz, J. C. Annu. Rev. Biochem. 1980, 49, 139. 
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